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Mid-infrared spectroscopy was used to discriminate between pure beef and beef containing 20%
w/w of a range of potential adulterants (heart, tripe, kidney, and liver). Spectra were acquired from
raw samples and from samples cooked using two different cooking regimes. Chemometric methods
(principal component analysis, partial least squares regression, and linear discriminant analysis)
applied to the spectra showed that discrimination between the pure and adulterated sample types
was possible, irrespective of cooking regime. The cross-validated classification success rate obtained
was ∼97%. Discrimination between all five sample types (pure beef and beef containing one of each
of the four adulterants) at each level of cook was also possible, but became more difficult as the
cooking level increased.
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INTRODUCTION

The nature of some meat products (pies, sausages, burgers)
offers many possibilities for adulteration. Cheaper cuts or offal
may be substituted for more expensive cuts, and water or
vegetable matter may be added. In previous work (1), we
conducted a feasibility study with the aim of determining
whether mid-infrared (MIR) spectroscopy could be used for
species identification, and if the method had potential as a rapid,
low-cost, easy-to-use screening method for the food industry.
We showed that it was possible to discriminate between three
meats (turkey, chicken, and pork) and were additionally able
to identify fresh samples from those that had been previously
frozen. Subsequently, McElhinney et al. (2) have performed
similar studies using red meats and a combination of analytical
techniques.

Spectroscopy is not the only approach to such analysis. Other
methods such as immunological (3,4), and enzymic methods
(5) can be used, and may be both cheap and quick. However,
the detection of nonmeat additives requires complex and more
prolonged examination of the sample. The addition of offal can
be particularly difficult to detect and may require detailed
microscopic examination (6). We have recently shown that MIR
spectroscopy, used in conjunction with appropriate chemometric
methods, can discriminate between pure beef and beef mixed
with selected offal (7). Furthermore, such methods could provide
quantitative information if the potential adulterant was known.

A primary aim of the present work was to ascertain whether
the discrimination obtained for raw meats could be obtained
with cooked samples. We have again chosen to concentrate on

the addition of offal to beef. However, we have elected to use
only one type of cut (silverside), because the earlier study (7)
showed that it was not readily possible to discriminate between
different cuts of beef. We have also chosen to work at one
adulterant level (20% w/w). This amount was chosen as being
reasonably challenging, and representative of a realistic adul-
teration level. The detection limits for kidney and liver suggested
by earlier work were around 10% w/w. In the present study,
we have additionally included two other offal types, heart and
tripe, the detection limits of which were not known in advance.

EXPERIMENTAL PROCEDURES

Samples.Samples of beef (cut: silverside), ox kidney, ox
liver, ox heart, and tripe (stomach) were purchased from local
retailers and butchers. The samples were minced to a coarse
paste soon after purchase, using a Krups (Peoria, IL) coffee
grinder, which was carefully washed between each preparation,
using 0.2% Triton-X 100 solution followed by distilled water.
Mixtures of offal and beef were prepared by adding 20% w/w
of selected offal samples to randomly selected beef samples.
Twelve samples of pure beef and of beef adulterated with each
offal type, were used in the experiments. All samples were
frozen at-20°C after preparation, and thawed in the refrigerator
before spectral acquisition or cooking.

Cooking. Samples were shaped into small patties of ap-
proximately 4 cm diameter and 1 cm thickness. These were
cooked in a R-202M 800W IEC 705 microwave oven (Sharp
Electronics Ltd, Manchester, UK) for 8 min, using either power
setting ‘medium-low’ (240 W) or ‘medium’ (400 W). We will
call these cooking regimes ‘level 1’ and ‘level 2’, respectively.
The ‘level 1’ regime was just sufficient to cook the samples
thoroughly, leaving no visibly raw areas. The ‘level 2’ regime
cooked the samples thoroughly, without causing burning, but
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with some dehydration. The cooked samples appeared to be of
homogeneous color and texture throughout.

Instrumentation and Spectral Acquisition. All spectra were
collected on a Spectra-Tech Applied Systems Inc (Shelton, CT)
Monitir Fourier transform infrared (FTIR) spectrometer system
equipped with a sealed and desiccated interferometer and room-
temperature deuterated triglycine sulfate detector. An attenuated
total reflectance (ATR) accessory was built into one of two
dedicated sampling stations. The ATR crystal was removable
from the instrument which remained sealed by the presence of
potassium bromide windows. In this way, the crystal could be
cleaned without ingress of water vapor into the spectrometer.
The ATR crystal was a nominal 11-reflection zinc selenide
crystal mounted in a trough plate. The crystal geometry was
45° parallelogram with mirrored angled faces.

Uncooked samples were applied to the ATR plate, taking care
to achieve good contact between the sample and the ATR
crystal, with no trapped air. A single-beam MIR spectrum of
the sample was collected over the range 800 to 4000 cm-1 at a
resolution of 4 cm-1. Sixty-four interferograms were co-added
before Fourier transformation using triangular apodization. The
single-beam spectrum of each sample was converted to absor-
bance units using a single-beam background spectrum collected
of a clean, dry ATR crystal.

Cooked samples were ground using the Krups coffee grinder
after cooking and cooling to room temperature. The finely
powdered, semi-dry material was spread onto the ATR crystal
and held in place with gentle hand pressure applied to a rubber
top-plate. Spectral acquisition conditions were the same as for
the uncooked samples.

Between spectral acquisition of all samples, the ATR plate
was cleaned with 0.2% Triton-X 100 solution, rinsed with
distilled water, and then dried.

Chemometric Analysis. All data analysis was carried out
using Matlab (The Mathworks Inc, Cambridge, UK). All
absorbance spectra were truncated to 470 data points in the
region 990-1895 cm-1. Two chemometric methods were
employed in this work. For data exploration, we have used
principal component analysis (PCA) using the covariance matrix.
For modeling the group structures in the data, we have used a
combination of methods: partial least squares (PLS) regression
onto dummy variables representing the proposed group structure

(“discriminant” PLS (8)), followed by distance-based linear
discriminant analysis (LDA), using the Mahalanobis distance
metric, applied to subsets of the PLS scores. PLS-LDA model
performance was measured by classification success rates
obtained by “leave-one-out” or internal cross-validation (ICV),
which has been shown to give a realistic indication of model
performance (9).

RESULTS AND DISCUSSION

Spectra collected from all uncooked samples are shown in
Figure 1. The spectra of raw beef, beef with kidney, and beef
with liver were similar in appearance to those collected in earlier
work (7). It is not possible to distinguish the spectra of
adulterated from unadulterated samples by visual inspection
alone.

A first step was to perform an exploratory principal compo-
nent analysis (PCA), to examine the data from a different
perspective. The PCA was performed using the covariance
matrix. Plots of the first twenty PC scores against one another
were examined. Some clustering of the data according to sample
type was found in several of the PC dimensions. In general, at
least two dimensions were needed to reveal a distinct group
corresponding to a particular sample type. For example, in
Figure 2a, the third, seventh, and eighth PC scores are plotted
against one another. This plot is best able to separate the pure
beef from the adulterated samples.Figure 2b shows the first,

Figure 1. Infrared spectra of all uncooked samples.

Figure 2. PCA of ‘uncooked’ data set: (a) the third vs seventh vs eighth
PC scores, and (b) the first vs fifth vs seventh PC scores.
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fifth, and seventh PC scores, which perhaps best simultaneously
distinguish all five groups. It is interesting to note that inFigure
2b, the groups corresponding to the two new adulterant types
used in this study, heart and tripe, lie closest to the ‘unadulter-
ated’ group.

The spectra obtained from the cooked samples are shown in
Figure 3. They are visually quite different from those obtained
from raw meats. Some of these differences reflect compositional
changes that occur upon cooking. In terms of spectral informa-
tion, the most notable effect of cooking is dehydration, leading
to the loss of the water peak at 1650 cm-1, and relatively more
prominent fat (1725 cm-1) and protein (1650 and 1550 cm-1)
peaks. It proved to be more difficult to acquire good quality
spectra from the drier cooked materials. The increased variability
in the spectral baseline, and in the overall spectral intensity,
are due to the difficulty of obtaining reproducible contact and
coverage of the ATR crystal. This variability was found to be
especially pronounced for the pure beef samples.

PCA exploratory analysis was applied to the ‘level 1’ and
‘level 2’ data sets. It was again possible to identify PC
dimensions that separated the different sample types into the
distinct groups. It is interesting to note that the distinction
between the ‘unadulterated’ and ‘adulterated’ groups appeared
greatest for the ‘level 2’ cooked samples, for which the first
and second PCs alone are almost able to distinguish the pure
beef samples (Figure 4a). Examination of the first loading
(Figure 4b) shows that this distinction is based largely on
differences in water content, consistent with the observed
difference in response to cooking between unadulterated and
adulterated samples.

PLS-LDA modeling was used to determine whether the
discrimination between pure beef and offals obtained in our
earlier work (7) could also be achieved for the groups of samples
in the present study, which contain only 20% w/w of each offal
type. 20% w/w is above the detection limit of 10% w/w
estimated for liver and kidney adulteration in our previous work,
but represents a sufficiently challenging and realistic level of
adulteration, particularly with regard to the additional adulterants
introduced in this study.

Initially, PLS-LDA was performed separately on the ‘un-
cooked’, ‘level 1’ and ‘level 2’ data sets. In each case, models

were obtained using subsets containing from 1 to 20 PLS scores.
The ICV classification success rates are plotted versus model
dimensionality inFigure 5a. For the ‘uncooked’ and ‘level 1’
data sets, the classification success rate reaches a maximum
when 13 PLS scores are used when 59/60 and 57/60 correct
classifications are obtained, respectively. For the ‘level 2’ data
set, 14 PLS scores are required to give a success rate of 55/60.
From visual consideration ofFigure 5a as a whole, it appears
that distinguishing all five groups becomes more difficult as
the degree of cooking increases. The relatively high subset sizes
needed to achieve good classification success rates reflect the
complexity of the problem, and are broadly consistent with our
findings from earlier work where, for example, 8 PLS scores
were needed to optimize the calibration for added kidney in
beef.

In practice, a more pragmatic aim is simply to distinguish
adulterated from unadulterated samples. This reduces the
analyses to two-group problems, viz, ‘unadulterated’ and
‘adulterated’. PLS-LDA was applied to each of the ‘uncooked’,
‘level 1’ and ‘level 2’ data sets, this time as two-group
formulations. The success rates obtained, again by ICV, are
shown inFigure 5b. For all three cooking levels, it was possible
to discriminate between the ‘unadulterated’ and ‘adulterated’
groups, with useful classification success rates. It also appears
that distinguishing the ‘unadulterated’ and ‘adulterated’ groups
is easiest in the ‘level 2’ data set, for which a maximum success
rate of 59/60 was obtained from just 5 PLS scores. This is to
be expected, in view of the results of the exploratory PCA
analysis, and the observed difference in the morphology of pure

Figure 3. Infrared spectra of (a) ‘level 1’ and (b) ‘level 2’ cooked samples.

Figure 4. PCA of ‘level 2’ data set: (a) first vs second PC scores, and
(b) first PC loading.
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and adulterated cooked samples. The ‘uncooked’ and ‘level 1’
data sets required 12 and 15 scores, respectively, to achieve
the same classification performance. We surmise that in these
cases, the distinction between the two groups is based upon
more subtle compositional changes, although it is beyond the
scope of the present work to determine the exact nature of these
differences.

It is of interest to determine whether such discrimination
between unadulterated and adulterated samples can be achieved
from the complete data set. Such a model would be needed in
a working adulteration screening test, where the amount of
heating received by a product may not be known. PCA was
applied to the complete set of 180 spectra. The first PC accounts
for in excess of 99% of the variability in the data set. From
visual examination of the scores with respect to this axis, it is
clearly strongly associated with cooking level (Figure 6a). This
scores plot also illustrates the increased variability at higher
cooking levels. Examination of the first loading (Figure 6b)
showed that this PC again represents mainly variation in the
water content, consistent with the findings from visual inspection
of the spectra. Note that it is also highly similar to the first PC
loading from the ‘level 2’ data set (Figure 4b). Among the PC
scores with lower variances, some were identified that were able
to distinguish, at least partially, the ‘adulterated’ from ‘unadul-
terated’ groups (Figure 7).

PLS-LDA was applied, again using cross-validation for a two-
group model. The classification success rate is shown versus
model dimensionality inFigure 8. We see that a useful
classification success rate of 174/180 is obtained from 15 PLS
scores. A graphical impression of the performance of the model
can be obtained by examining the ICV predictions of the dummy
variable made by the PLS regression (10). These are plotted
against sample number inFigure 9. The boundary between the

Figure 5. Classification success rates by ICV plotted versus model dimensionality, for (a) five-group discrimination, and (b) two-group discrimination.

Figure 6. PCA of complete set of 180 spectra: (a) first vs second PC
scores, and (b) first PC loading.

Figure 7. Sixth vs seventh vs ninth PC scores from the entire data set.
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two groups determined by LDA and a 15-score model is also
indicated. Note that the two adulterated samples erroneously
classified as unadulterated are both mixtures of beef with heart.
This is consistent with the suggestion from the exploratory PCA
that heart is closer in composition to beef than, say, kidney or
liver.

CONCLUSIONS

This work has shown that it is possible to discriminate
between pure beef and beef containing 20% w/w of a range of
potential adulterants (heart, tripe, kidney, and liver), with
acceptable classification success rates. This discrimination is
possible both for raw samples and for samples cooked using
two different regimes, although for the cooked samples it
becomes more difficult to distinguish between the individual
adulterants.

Cooking produces compositional changes in the samples,
which lead to marked changes in the spectra obtained. The main

compositional change related to cooking is water loss, and this
is reflected in the spectra (reduction in the water peak at 1650
cm-1, and relatively more prominent fat (1725 cm-1) and protein
(1650 and 1550 cm-1) peaks), as well as in the results of the
chemometric analysis. Good quality spectra are harder to obtain
at the highest cooking level, and the spectra become more
variable. This is due to experimental difficulties, in particular
of ensuring reproducible contact with the ATR crystal, as the
samples become drier and more particulate.

Internally cross-validated PCA/LDA analysis of the complete
data set showed that 174/180 (∼97%) of samples could be
correctly classified as unadulterated or adulterated, irrespective
of cooking level. We conclude that MIR spectroscopy combined
with chemometrics has the potential to form the basis of a
method for authenticity screening in cooked meat products.

LITERATURE CITED

(1) Al-Jowder, O.; Kemsley, E. K.; Wilson, R. H. Mid-infrared
spectroscopy and authenticity problems in selected meats: a
feasibility study.Food Chem.1997,59(2), 195-201.

(2) McElhinney, J.; Downey, G.; O’Connell, C. Quantitation of lamb
content in mixtures with raw minced beef using visible, near-
infrared and mid infrared spectroscopy.J. Food Sci.1999, 587-
591.

(3) Jones, S. J.; Patterson, R. L. S. Modified indirect ELISA
procedure for raw meat speciation using crude antispecies
antisera and stabilized immunoreagents.J. Sci. Food Agric.1986,
37, 767-775.

(4) Smith, C. J. Applications of immunoassay to the detection of
food adulteration. An overview. InFood Safety and Quality
Assurance-Applications of Immunoassay Systems; Morgan, M.
R. A., Smith, C. J., Williams, P. A., Eds.; Elsevier Applied
Science: London, 1991; pp 13-32.

(5) Sharma, N. K.; Srivatava, V. A.; Gill, J. P. S.; Joshi, D. V.
Differentiation of meat from food animals by enzyme assay.
Food Control1994,5, 219-221.

(6) Lumley, I. D. Authenticity of meat and meat products. InFood
Authentication; Ashurst, P. R., Dennis, M. J., Eds.; Chapman
and Hall: London, 1996; pp 108-139.

(7) Al-Jowder, O.; Defernez, M.; Kemsley, E. K.; Wilson, R. H.
Mid-infrared spectroscopy and chemometrics for the authentica-
tion of meat products.J. Agric. Food Chem. 1999,47, 3210-
3218.

(8) Kemsley, E. K.; Discriminant Analysis of High-Dimensional
Data: A Comparison of Principal Components and Partial Least
Squares Data Reduction Methods.Chemom. Intell. Lab. Syst.
1996,33 (1), 47-61.

(9) Defernez, M.; Kemsley, E. K. The use and misuse of chemo-
metrics for treating classification problems.Trac-Trends Anal.
Chem.1997,16, 2216-221.

(10) Kemsley, E. K.; Holland, J. K.; Defernez, M.; Wilson, R. H.
Detection of Adulteration of Raspberry Purees using Infrared
Spectroscopy and Chemometrics.J. Agric. Food Chem.1996,
44, 3864-3870.

Received for review July 11, 2001. Revised manuscript received
November 6, 2001. Accepted November 21, 2001. R.H.W. and E.K.K.
acknowledge the funding of the Biotechnology and Biological Sciences
Research Council (BBSRC) through its competitive strategic grant.

JF0108967

Figure 8. Classification success rate by ICV versus model dimensionality,
for 2-group PLS-LDA (applied to complete data set).

Figure 9. ICV predictions of the dummy variable obtained from PLS
regression (15-score model).
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